

Catalysis Today 64 (2001) 31-41

Transient response of catalyst bed temperature in the pulsed reaction of partial oxidation of methane to synthesis gas over supported group VIII metal catalysts

Kiyoharu Nakagawa ^{a,b}, Na-oki Ikenaga ^a, Tetsuhiko Kobayashi ^c, Toshimitsu Suzuki ^{a,b,*}

Department of Chemical Engineering, Faculty of Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
 High Technology Research Center, Kansai University, Suita, Osaka 564-8680, Japan
 Osaka National Research Institute, AIST, MITI, Ikeda, Osaka 563-8577, Japan

Abstract

Mechanisms of partial oxidation of methane to synthesis gas were studied using a pulsed reaction technique and temperature jump measurement. Catalyst bed temperatures were directly measured by introducing 1 and 3 ml pulses of a mixture of CH₄ and O₂ (2/1). With Ir, Pt and Ni/TiO₂ catalysts, a sudden temperature increase at the front edge of the catalyst bed was observed upon introduction of the pulse. The synthesis gas production basically proceeded via two-step paths consisting of highly exothermic complete methane oxidation to give H₂O and CO₂, followed by the endothermic reforming of methane with H₂O and CO₂. In contrast, with the Rh and Pd/TiO₂ catalysts, the temperature at the front edge of the catalyst bed decreased upon introduction of the CH₄/O₂ (2/1) pulse and a small increase in the temperature at the rear end was observed. Initially, the endothermic decomposition of CH₄ to H₂ and deposited carbon or CH_x probably took place at the front edge of the catalyst bed, after which the deposited carbon or generated CH_x species would be oxidized into CO_x. When the Ru/TiO₂ catalyst was used, a temperature increase at the front edge of the catalyst bed was observed upon introduction of the 3 ml pulse of CH₄/O₂. In contrast, the temperature drop at the front edge of the catalyst bed was observed for a 1 ml pulse of CH₄/O₂. These results seemed to exhibit two possibilities for a synthesis gas formation route over the Ru/TiO₂ catalyst. The reaction pathway of the partial oxidation of methane with group VIII metal-loaded catalysts depended strongly upon the metal species and reaction conditions. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Partial oxidation; Iridium; Platinum; Palladium; Rhodium; Ruthenium; Nickel; Titania; Pulsed reaction; Methane decomposition

1. Introduction

Synthesis gas production from methane is indispensable for the chemical utilization of natural gas, such as in dimethyl ether, methanol and Fischer–Tropsch syntheses. The partial oxidation of

Partial oxidation: $CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2$, $\Delta H_{298}^0 = -36 \text{ kJ/mol}$ (1)

Two reaction pathways have been proposed to account for the catalytic conversion of methane with oxygen to synthesis gas. Methane combustion, followed by steam and CO₂ reformings are commonly accepted

E-mail address: tsuzuki@ipcku.kansai-u.ac.jp (T. Suzuki).

0920-5861/01/\$ – see front matter © 2001 Elsevier Science B.V. All rights reserved. PII: \$0920-5861(00)00506-X

methane has attracted much attention, the reaction is as follows:

^{*} Corresponding author. Tel.: +81-6-6368-0865; fax: +81-6-638-88869.

mechanisms which are as follows:

Combustion : $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$, $\Delta H_{298}^0 = -801 \text{ kJ/mol}$ (2)

Steam reforming : $CH_4 + H_2O \rightarrow CO + 3H_2$, $\Delta H_{298}^0 = +206 \, \text{kJ/mol}$ (3)

CO₂ reforming :
$$CH_4 + CO_2 \rightarrow 2CO + 2H_2$$
,
$$\Delta H_{298}^0 = +247 \text{ kJ/mol}$$
 (4)

Nakamura et al. [1] investigated the same reaction over a SiO₂-supported rhodium catalyst and concluded that the primary products of CO₂ and H₂O found at 600–700 K were further converted into CO and H₂ through the reactions of CH₄ with CO₂ and H₂O at an elevated temperature. We have previously reported that a Ir/TiO₂ catalyst has promoted the reaction sequence of the total oxidation of methane to CO₂ and H₂O, as well as the reforming reactions to synthesis gas. The CH₄ conversion, as well as the CO and H₂ selectivities, decreased with increasing space velocity, but the CO₂ selectivity increased over the Ir/TiO₂ catalyst [2,3].

The other pathway is the direct course. Hickman and coworkers [4–7] investigated alumina monolith-supported rhodium and platinum catalysts for the partial oxidation of methane under an extremely short residence time between 10^{-4} and 10^{-2} s. A very high selectivity to synthesis gas (>90%) was observed, indicating the direct pathway of CH₄ to CO and H₂. Boucouvalas et al. [8,9] reported that an Ru/TiO₂ catalyst promotes the direct formation of synthesis gas and that high CO and H₂ selectivities were obtained over Ru/TiO₂ catalyst at methane conversions approaching zero.

Prettre et al. [10] reported that the temperature at the front of the catalyst bed using a supported nickel catalyst was found to be much higher than the furnace temperature and that a temperature drop occurred in the inner part of the catalyst bed. Such phenomena have also been observed by other researchers [11,12].

We have performed detailed analyses of the reaction pathway of the partial oxidation of methane to synthesis gas over Ir- and Rh-loaded catalysts using a transient response of the catalyst bed temperature in a pulsed reaction. The temperature jump measurement technique was effective in evaluating an exothermic

or endothermic reaction path methodology and the validity of this measurement for the test of exothermic or endothermic reactions has been confirmed [13]. In this study, the measurement of the temperature jump was extended to examine the reaction pathway of the partial oxidation of methane to synthesis gas using various TiO₂-supported group VIII metal catalysts.

2. Experimental

 TiO_2 (Japan Aerosil, surface area: $50 \, m^2/g$) was used as the support. The supported group VIII metal catalysts containing 5 wt.% metal were prepared by the impregnation method. Supported catalysts were calcined at 873 K for 5 h in air prior to the reaction.

Transient response measurements of the catalyst bed temperature in the pulsed reactions were carried out using a fixed bed quartz reactor (i.d. $4 \times 200 \,\mathrm{mm}$). Two thin wall-sheathed K-type thermocouples (outer diameter 0.6 mm) were placed at the front edge and the rear end of the catalyst bed and 100 mg of the catalyst was charged. A pulse of CH₄ and O₂ (2/1) mixed gas was introduced with a six port gas sampling valve equipped with measuring tubes, under a stream of Ar carrier gas. The reaction system has been described elsewhere in detail [13]. Before the reaction, the catalysts were reduced with H₂ for 1 h at 873 K. Analyses of the gases during the pulsed reactions were made using an on-line quadrupole mass spectrometer (HAL201, Hiden Analytical). The mass spectrometer scanned the parent peaks of the five compounds, H₂, CH₄, CO, O₂ and CO₂, within 1 s and repeated scans were collected in a personal computer. Measured intensities were corrected for the relative sensitivities of the respective ions. All the pulsed reactions were repeated more than two runs and reproducible results were obtained.

3. Results and discussion

3.1. Effect of TiO₂-supported group VIII metal catalysts on the partial oxidation of methane

Table 1 shows the product distribution of the partial oxidation of TiO₂-supported group VIII metal catalysts [2]. Supported catalysts were calcined at 873 K

Table 1 Activity of various TiO_2 -supported catalysts for partial oxidation at 873 K [2]^a

Catalyst	CH ₄ conversion (%)	CO selectivity (%)	CO ₂ selectivity (%)	H ₂ selectivity (%)	H ₂ /CO ratio
Rh/TiO ₂	26.5	81.6	18.4	87.3	2.1
Ir/TiO ₂	25.7	81.8	18.2	83.1	2.0
Ru/TiO ₂	24.0	79.0	21.0	80.5	2.0
Pd/TiO ₂	23.9	74.0	26.0	82.8	2.2
Pt/TiO ₂	11.5	30.2	69.8	39.9	2.6
Ni/TiO ₂	2.4	22.0	78.0	2.9	0.3
TiO_2	1.2	18.6	81.4	4.0	0.4

^a Catalyst, $0.060 \, \mathrm{g}$; metal loading level = $5.0 \, \mathrm{wt.\%}$; flow rate, $30.0 \, \mathrm{ml/min}$ (CH₄/O₂ = 5.0); space velocity = $30.000 \, \mathrm{h^{-1} \, ml}$ g-cat⁻¹.

in air prior to the reaction thus, oxidic forms of transition metals were used. The conversion of methane was affected by the metal species; their order of activity was Rh \geq Ir > Ru \geq Pd > Pt \gg Ni. At 873 K, selectivities to CO and H₂ were the highest with the Rh, Ru and Ir/TiO2 catalysts with a H2 to CO ratio of 2.0-2.1 as expected from the stoichiometric equation (reaction (1)). Excess H₂ may be a result of the water-gas shift reaction or decomposition of CH₄ over Rh and Pd/TiO2 catalysts. Pt and Ni/TiO2 catalysts afforded higher CO₂ selectivity than that of Rh or Ir/TiO₂ catalysts. This seems to indicate that complete oxidation of CH₄ (reaction (2)) occurred mainly over the Pt/TiO₂ catalyst. The Ni/TiO₂ catalyst did not produce CO and H₂ in the temperature range 673–873 K and only complete oxidation of CH₄ occurred with very low activity. Metallic nickel was thought to be the active species in the partial oxidation of methane [11,14]. Nickel oxide loaded on TiO₂ seemed not to be reduced by CH₄, CO and H₂ below 873 K in the presence of O₂; consequently, Ni/TiO₂ could not be an effective catalyst for the partial oxidation of methane.

3.2. Decomposition of methane over TiO₂-supported group VIII metal catalysts

Figs. 1 and 2 show the transient response of H₂ production when the flowing gas was switched from Ar to CH₄ at 873 K (reaction (5)) over TiO₂-supported group VIII metal catalysts. H₂ was the only gaseous species observed (no higher hydrocarbons).

$$CH_4 \rightleftharpoons C + 2H_2$$
, $\Delta H_{298}^0 = +75 \text{ kJ/mol}$ (5)

When CH₄ was supplied to Ir, Ru and Pt/TiO₂ catalysts, small H₂ responses appeared instantaneously

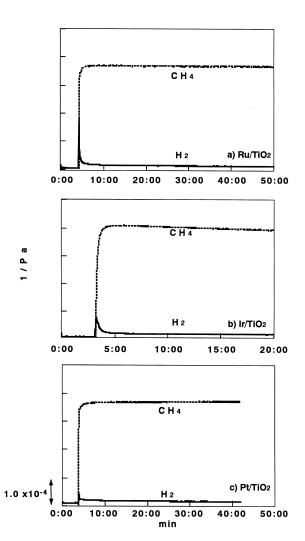
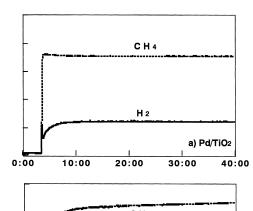



Fig. 1. Decomposition of CH_4 over Ru, Ir and $Pt(5 \text{ wt.\%})/TiO_2$. Reaction conditions — temperature: 873 K, catalyst: 100 mg, CH_4 flow rate = 10 ml/min.

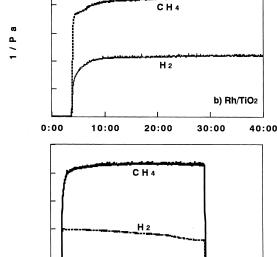


Fig. 2. Decomposition of CH_4 over Pd, Rh and Ni(5 wt.%)/TiO₂. Reaction conditions — temperature: 873 K, catalyst: 100 mg, CH_4 flow rate = $10 \, \text{ml/min}$.

20:00

min

10:00

0:00

c) Ni/TiO2

40:00

30:00

and then decreased to a low level. In contrast, methane decomposition continued to produce H_2 over Rh, Pd and Ni/TiO $_2$ catalysts for more than 40 min except for Ni/TiO $_2$. These results indicated that Rh, Pd and Ni/TiO $_2$ exhibited a much higher activity toward the decomposition of CH_4 than did Ir, Ru and Pt/TiO_2 catalysts.

Verykios and coworkers [15] reported the results of methane decomposition over $Rh(0.5 \text{ wt.\%})/Al_2O_3$ catalyst at 923 K. They concluded that after 600 s on

Table 2
Temperature programmed reduction with H₂ over TiO₂-supported group VIII metal catalyst^a

	Reduction temperature (K)			
Catalyst	Initial	Maximum reduction rate		
Pd/TiO ₂	415.7	415.7		
Rh/TiO ₂	455.9	455.9		
Ru/TiO ₂	541.6	552.3		
Pt/TiO ₂	495.6	558.5		
Ir/TiO ₂	573.0	666.3		
Ni/TiO ₂	473.0	860.0		

 $^{\rm a}$ Catalyst, 100 mg; heating rate, 20 K/min; flow rate, $\rm H_2=10\,ml/min.$

stream the rate of H_2 production decreased to about one-seventh of its initial rate. In our previous study, when CH_4 was supplied to $Rh(5.0 \text{ wt.\%})/Al_2O_3$ catalyst initially showed a high activity towards decomposition of CH_4 . However, the H_2 concentration gradually decreased with increasing time-on-stream and H_2 production was not detected after 4800 s. In contrast, methane decomposition continued to produce H_2 over the Rh/TiO_2 catalyst for 2400 s. [13].

Table 2 and Fig. 3 show the results of temperature programmed reduction with H_2 over TiO_2 -supported group VIII metal catalysts. Only H_2O was observed as a product. The maximum reduction temperatures increased in the following order in terms of elements: Pd < Rh < Ru < Pt < Ir < Ni. This order is consistent with the activity order of CH_4 decomposition. Pd and Rh/TiO_2 catalysts started to be reduced at temperatures as low as 423–453 K. In addition, maximum reduction temperatures of Pd and Rh/TiO_2 catalysts were lower than those of other metal-loaded catalysts. Pd and Rh/TiO_2 catalysts were easily reduced to metallic species and had a high CH_4 decomposition activity at 873 K.

The Ni/TiO₂ catalyst also exhibited high CH₄ decomposition. It was partly reduced at low temperatures; however, a high temperature of about 873 K was needed to reduce it completely. On the other hand, the Pt and Ir/TiO₂ catalysts which showed low activity for the CH₄ decomposition were reduced at higher temperatures than those of the Rh and Pd/TiO₂ catalysts. The Pt loaded catalyst did not show distinct reduction peaks. The reason for this seems to be that the Pt-loaded TiO₂ catalyst was not fully oxidized during oxidation at 873 K.

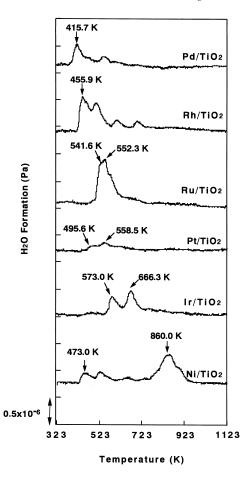


Fig. 3. Temperature programmed reaction with H_2 over TiO_2 -supported catalysts. Reaction conditions — catalyst: 100 mg, metal loading level = 5 wt.%, heating rate: 20 K/min, flow rate: $H_2 = 10 \text{ ml/min}$.

3.3. Transient response of catalyst bed temperature in the pulsed reaction of partial oxidation of methane

3.3.1. Ir, Pt and Ni/TiO₂ catalysts

Figs. 4–6 show the transient temperature responses of TiO₂-supported Ir, Pt and Ni catalysts against a pulsed injection of CH₄/O₂. The catalysts were reduced by H₂ flow for 1 h at 873 K. When the Ir, Pt and Ni/TiO₂ catalysts were used, a sudden large temperature rise at the front edge of the catalyst bed was observed upon introduction of the pulse, but the temperature of the rear end of the catalyst bed was only slightly increased. Especially, the Pt/TiO₂ catalyst which showed high CO₂ selectivity (Table 1)

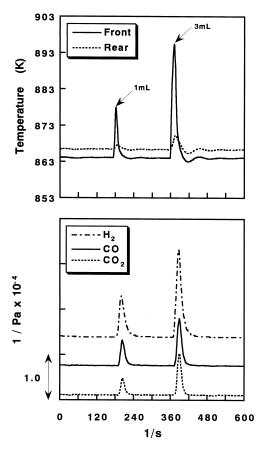


Fig. 4. Temperature profile at front and rear edges of catalyst bed and the responses of products when pulsing CH₄ and O_2 over $Ir(5 \text{ wt.\%})/TiO_2$ catalyst. Reaction conditions — Ar carrier = 10 ml/min, mixed gas: $CH_4:O_2=2:1$, 1 or 3 ml, furnace temperature: 873 K.

emerged a larger temperature rise than that of Ir and Ni/TiO $_2$ catalysts and a large amount of CO $_2$ was produced when a 3 ml of pulse was injected, indicating that a large amount of heat was generated at the front edge of the catalyst bed. The effluent of the pulsed reaction exhibited the formation of CO and H $_2$. The slight temperature increase of the rear edge of the catalyst bed on the Ir, Pt and Ni/TiO $_2$ catalysts might be ascribed to the heat conduction from the front and middle part of the catalyst bed.

Synthesis gas formation apparently proceeded via two pathways over the TiO₂-supported group VIII metal catalysts. One reaction pathway would be the two-step reactions, the reaction sequence of total

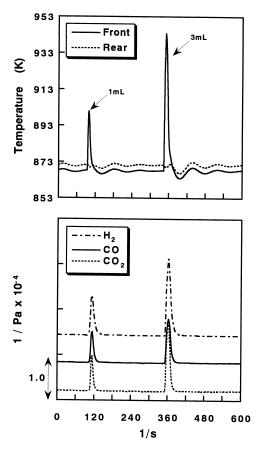
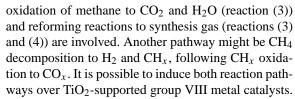



Fig. 5. Temperature profile at front and rear edges of catalyst bed and the responses of products when pulsing CH₄ and O_2 over Pt(5 wt.%)/TiO₂ catalyst. Reaction conditions — Ar carrier = $10 \, \text{ml/min}$, mixed gas: CH₄:O₂ = 2:1, 1 or 3 ml, furnace temperature: 873 K.

In the high temperature range $1200-1400 \, \text{K}$, Hickman and coworkers [4–7] investigated alumina monolith-supported rhodium and platinum catalysts for the partial oxidation of methane, under an extremely short residence time between 10^{-4} and 10^{-2} s. A very high selectivity to synthesis gas (>90%) was observed, indicating the direct pathway of CH₄ to CO and H₂. However, it is difficult to investigate reaction

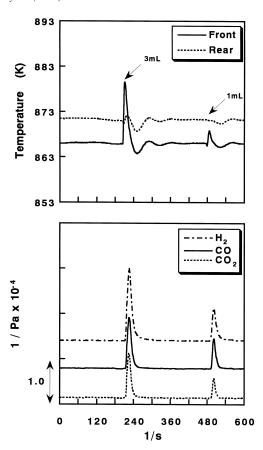


Fig. 6. Temperature profile at front and rear edges of catalyst bed and the responses of products when pulsing CH₄ and O_2 over Ni(5 wt.%)/TiO₂ catalyst. Reaction conditions — Ar carrier = $10 \, \text{ml/min}$, mixed gas: CH₄: O_2 = 2:1, 1 or 3 ml, furnace temperature: 873 K.

pathways using the thermodynamic equilibrium composition of product gases at high temperatures [14]. Therefore, we conducted detailed analyses of the reaction pathway of the partial oxidation of methane to synthesis gas using the transient response of the catalyst bed temperature to a pulsed reaction at a moderate temperature of 873 K.

The reaction pathway of synthesis gas production over the Ir, Pt and Ni/TiO₂ catalysts seemed to proceed mainly via the two-step reactions that the Ir, Pt and Ni/TiO₂ catalysts might have promoted the reaction sequence of total oxidation of methane to CO₂ and H₂O (reaction (2)), followed by reforming reactions to synthesis gas (reactions (3) and (4)). The Pt

and Ni/TiO₂ catalysts, however, would have shown low levels of reforming reactions to synthesis gas (reactions (3) and (4)) at 873 K. Lower activity of the Pt/TiO₂ catalyst for CO₂ and H₂O reforming was supported by results that the large temperature increases and higher CO₂ concentration were observed under steady flow than those of the Ir/TiO₂ catalyst. The NiO/TiO₂ catalyst exhibited very low activity for the partial oxidation under steady flow. However, in the pulsed reaction over hydrogen reduced Ni/TiO₂ catalyst, conversion of CH₄ to H₂ and CO was higher than Pt/TiO₂ catalyst, consequently, the temperature at the front edge of the Ni/TiO₂ catalyst bed was smaller than that of the Pt/TiO₂ catalyst.

If the heat loss from the catalyst bed and thermocouples were nil, the estimated temperature increase during complete oxidation would be ca. 473 K for the 3 ml pulse. In our apparatus, heat loss could not be eliminated. The observed temperature rise was about 30-70 K. Endothermic CO₂ and H₂O reforming reactions proceeded to induce not only heat loss from the reactor wall, but also to slow the rise in the temperature of the catalyst bed. If a direct partial oxidation reaction (reaction (1)) proceeded, due to the small degree of heat generation such a large rise in temperature could not be observed. Thus, when the Ir, Pt and Ni/TiO2 catalysts were used, the temperature increase in the front edge of the catalyst bed could safely be ascribed to the complete oxidation of methane. In addition, Ir and Pt/TiO₂ catalysts induced low CH₄ decomposition to H_2 and CH_x (Fig. 1). Therefore, it would be difficult to produce synthesis gas using the formation route of CH₄ decomposition to H₂ and CH_x, following CH_x oxidation to CO_x .

In regard to the Ni/TiO₂ catalyst, it certainly had a high activity for decomposition of CH₄ in the absence of oxygen. In the presence of oxygen, however, NiO would be in a more stable state than would be Ni metal in the presence of oxygen below 873 K. Table 2 also shows the difficulty of reducing NiO to Ni metal at low temperatures. Ni(5 wt.%)/TiO₂ samples (both fresh and used) showed diffraction patterns ascribed to NiTiO₃ species as revealed by XRD [16]. There findings indicate that Ni oxide was not reduced to a metallic species. Reduced Ni/Al₂O₃ is an active catalyst and is commonly used in the partial oxidation of methane to synthesis gas, where metallic Ni has been regarded as the active component. However,

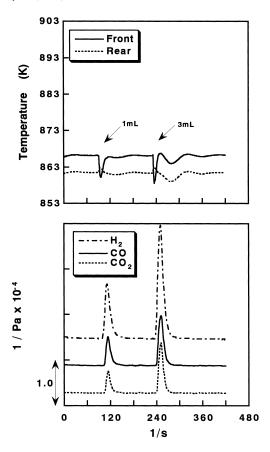


Fig. 7. Temperature profile at front and rear edges of catalyst bed and the responses of products when pulsing CH₄ and O_2 over Rh(5 wt.%)/TiO₂ catalyst. Reaction conditions — Ar carrier = $10 \, \text{ml/min}$, mixed gas: CH₄: O_2 = 2:1, 1 or 3 ml, furnace temperature: 873 K.

the inactive NiAl₂O₄ phase was often formed during calcination in air. Complete oxidation of methane to CO₂ and H₂O occurs at a low temperature over the oxidized NiO/Al₂O₃ or NiAl₂O₄ catalysts, but synthesis gas was produced only by a reduced Ni/Al₂O₃ catalyst at temperatures above 1023 K [11].

3.3.2. Rh, Pd and Ru/TiO₂ catalysts

Figs. 7 and 8 show the transient response temperature behavior of TiO_2 -supported Rh and Pd catalysts induced by a pulsed injection of CH_4/O_2 . The catalysts were reduced by H_2 flow for 1 h at 873 K before use. When the Rh and Pd/ TiO_2 catalysts were used, in contrast to the above cases the temperature at the front edge decreased upon introduction of the CH_4/O_2

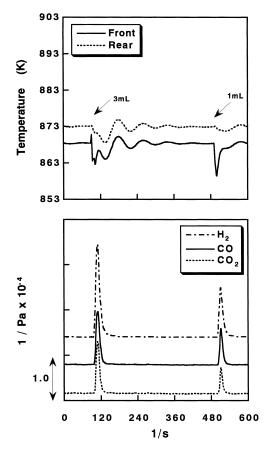


Fig. 8. Temperature profile at front and rear edges of catalyst bed and the responses of products when pulsing CH₄ and O_2 over Pd(5 wt.%)/TiO₂ catalyst. Reaction conditions — Ar carrier = $10 \, \text{ml/min}$, mixed gas: CH₄:O₂ = 2:1, 1 or 3 ml, furnace temperature: 873 K.

pulse and an increase in the temperature at the rear end was observed. It is surprising that the temperature drop at the front edge of the catalyst bed was observed for the Rh and Pd/TiO₂ catalysts, even when methane and oxygen were introduced in a ratio of 2/1. Rh and Pd/TiO₂ catalysts afforded high H₂ selectivities (Table 1) and large amounts of H₂ were also produced in the 3 ml pulsed reaction.

In the Pd/TiO₂ catalyst, initial temperature drop at the front edge of the catalyst bed was observed followed by the emergence of oscillatory phenomenon. This phenomenon would probably be similar to the oscillatory behavior seen over the Pt and Pd/Al₂O₃ catalysts on CO oxidation [17,18].

When the Ru/TiO $_2$ catalyst was used, a sudden rise in temperature at the front edge of the catalyst bed was observed upon introduction of the 3 ml pulse of CH $_4$ and O $_2$. However, a temperature drop at the front edge of the catalyst bed was observed for a 1 ml pulse of CH $_4$ and O $_2$ mixture.

The reaction pathway toward synthesis gas production over the Rh and Pd/TiO_2 catalysts seemed to mainly proceed via CH_4 decomposition to H_2 and CO_x , following CH_x oxidation to CO_x . In the steady flow, the Rh/TiO₂ catalyst maintained high H_2 selectivities even at high space velocities [13]. The Rh and Pd/TiO_2 catalysts had a high activity of methane decomposition (Fig. 2). Under high space velocity, Hickman and coworkers [4–7] investigated the partial oxidation of methane using Rh and Pt/alumina monoliths catalysts and proposed that CO and CO and CO are the primary products of the methane partial oxidation reaction using these catalysts.

Buyevskaya et al. [19,20] studied the pulse reaction of methane and oxygen over the Rh/Al₂O₃ catalyst using the temporal-analysis-of-product (TAP) reactor. CO₂ was formed as a primary product via a redox mechanism with the surface oxygen of the Rh/Al₂O₃ catalyst. In our apparatus, initially, H₂ formation and carbon deposition probably took place via the decomposition of CH₄ and then deposited carbon or CH_x species generated on the Rh surface were oxidized into CO_x over the Rh and Pd/TiO₂ catalysts. The temperature increase of the rear edge of the catalysts' beds might be caused by the oxidation of CH_x which was formed by an endothermic reaction of methane decomposition. From these results, it seems reasonable even in the presence of O₂, that initially CH₄ decomposed to CH_x and H_2 over the Rh and Pd/TiO₂ catalysts. CH_x on Rh or Pd would be oxidized with gas phase oxygen. Formation of the Rh-CH_x species was confirmed by TPR with H₂ giving CH₄ at above 773 K. H₂ and carbon seemed to be the primary product; however, it cannot accurately be said that CO was the primary product in the partial oxidation of methane in the pulsed reaction over Rh/TiO₂ and Pd/TiO₂ catalysts.

It seems reasonable that measurement of temperature changes of the catalysts' beds reflected only the overall heat change. If the heat loss from the catalyst bed and thermocouples were nil, compared with our present results the estimated temperature decrease in the decomposition of methane would be much larger. It is possible to induce both exothermic and endothermic reactions anywhere on the catalyst bed. If synthesis gas was formed at the front of the catalyst bed, a slightly exothermic response could be observed. However, endothermic response was detected only at the front edge of the catalyst bed over the Rh and Pd/TiO₂ catalysts. Therefore, as compared to the oxidation of methane, the decomposition of methane when in high concentrations to give carbon or CH_x would proceed easily at the front edge of the catalyst bed over Rh and Pd/TiO₂ catalysts.

Boucouvalas et al. [21,22] reported that synthesis gas produced the over Ru/TiO₂ catalyst was to a large extent formed via the direct partial oxidation scheme. CO and CO₂ were probably formed by paral-

893 Front ----- Rear 883 3 Temperature 873 863 853 - H₂ CO CO 1.0 0 120 240 480 600 1/s

Fig. 9. Temperature profile at front and rear edges of catalyst bed and the responses of products when pulsing CH₄ and O_2 over Ru(5 wt.%)/TiO₂ catalyst. Reaction conditions — Ar carrier = $10 \, \text{ml/min}$, mixed gas: CH₄:O₂ = 2:1, 1 or 3 ml, furnace temperature: 873 K.

lel routes via two different sites on the catalyst. When the Ru/TiO_2 catalyst was used, a sudden rise in the temperature at the front edge of the catalyst bed was observed upon introduction of the 3 ml pulse of the CH_4 and O_2 mixture (Fig. 9). However, a temperature drop at the front edge of the catalyst bed was observed for a 1 ml pulse of CH_4 and O_2 mixture.

To understand such an unusual behavior, the effect of space velocity was examined in regard to the Ru/TiO₂ catalyst (Fig. 10). When the carrier gas (Ar) flow rate was increased from 10 to 20 and 30 ml/min, a temperature rise at the front edge of the catalyst bed was observed at above 20 ml/min of flow rate, even if 1 ml of pulse was introduced. The temperature rise at the front edge of the catalyst bed increased

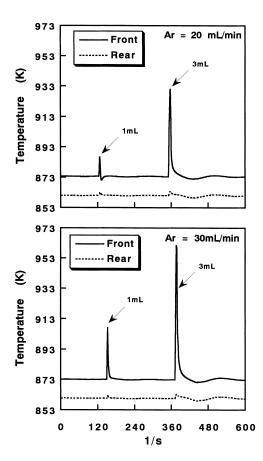


Fig. 10. Temperature profile at front and rear edges of catalyst bed when pulsing CH_4 and O_2 over $Ru(5 \text{ wt.}\%)/TiO_2$ catalyst. Reaction conditions — Ar carrier = 20 and 30 ml/min, mixed gas: $CH_4:O_2=2:1,\ 1$ or 3 ml, furnace temperature: 873 K.

with increasing space velocity and amounts of CO and H₂ decreased with increasing space velocity. Probably, complete oxidation of CH₄ would easily occur at high space velocities. In addition, at these space velocities it seemed to be difficult to induce the decomposition of CH₄ and reforming reactions. These results seemed to exhibit two possible synthesis gas formation routes over the Ru/TiO₂ catalyst. The catalytic pathways depended on such reaction conditions as the concentrations of the reactant, space velocity, etc.

The synthesis gas formation route over TiO₂-supported group VIII metal catalysts would basically proceed both by the two-step reactions of the reaction sequence of total oxidation of methane to CO₂ and H₂O (reaction (2)) following the reforming reactions to synthesis gas (reactions (3) and (4)) and by CH₄ decomposition to H₂ and CH_x, following CH_x oxidation to CO_x.

The ratio of combustion reforming to CH_4 decomposition following CH_x oxidation might strongly depend upon the stability of the metal species, the degree of reduction of metal oxides and reaction conditions.

4. Conclusion

A pulsed reaction technique involving measuring of the temperature changes on the catalyst bed afforded useful information regarding the route of synthesis gas formation over the TiO₂-supported group VIII metal catalysts.

The reaction pathway of synthesis gas production over the Ir, Pt and Ni/TiO₂ catalysts seemed to proceed mainly via the two-step reactions that the Ir, Pt and Ni/TiO₂ catalysts might have promoted the reaction sequence of total oxidation of methane to CO_2 and H_2O (reaction (2)), followed by reforming reactions to give synthesis gas (reactions (3) and (4)). In contrast, for the Rh and Pd/TiO₂ catalysts, a different reaction pathway for synthesis gas formation can be proposed. Rh and Pd/TiO₂ catalysts exhibited high catalytic activity in the decomposition of CH_4 to give hydrogen and deposited carbon or CH_x , even in the presence of oxygen. The temperature at the front edge of the catalyst bed decreased upon introduction of a CH_4/O_2 pulse and an increase in the temperature at

the rear end was observed, indicating that H_2 formation and carbon deposition probably took place via the decomposition of CH_4 , after which deposited carbon or CH_x generated on the Rh surface was oxidized into CO_x .

When the Ru/TiO₂ catalyst was used, a sudden rise in the temperature at the front edge of the catalyst bed was observed upon introduction of the 3 ml pulse of CH₄ and O₂. However, the temperature drop at the front edge of the catalyst bed was observed for a 1 ml pulse of CH₄ and O₂. The catalytic pathways depended upon the stability of metal species, the degree of reduction of metal oxides and the reaction conditions.

Acknowledgements

This work was supported by a Grant-in-Aid on Priority Areas (No. 09218255) from the Ministry of Education, Science, Sports and Culture of Japan. K. Nakagawa is grateful for his Research Fellowship from the Japan Society for the Promotion of Science (JSPS) for Young Scientists.

References

- J. Nakamura, S. Umeda, K. Kubushiro, K. Kunimori, T. Uchijima, Sekiyu Gakkaishi 36 (1993) 97.
- [2] K. Nakagawa, N. Ikenaga, T. Suzuki, T. Kobayashi, M. Haruta, Appl. Catal. A 169 (1998) 281.
- [3] K. Nakagawa, K. Anzai, N. Matsui, N. Ikenaga, T. Suzuki, Y. Teng, T. Kobayashi, M. Haruta, Catal. Lett. 51 (1998) 163.
- [4] D.A. Hickman, L.D. Schmidt, J. Catal. 138 (1992) 267.
- [5] D.A. Hickman, E.A. Haupfear, L.D. Schmidt, Catal. Lett. 17 (1993) 223.
- [6] D.A. Hickman, L.D. Schmidt, Science 259 (1993) 343.
- [7] S.S. Bharadwaj, L.D. Schmidt, Fuel Process. Technol. 42 (1995) 109.
- [8] Y. Boucouvalas, Z. Zhang, X.E. Verykios, Catal. Lett. 40 (1996) 189
- [9] Y. Boucouvalas, Z.L. Zhang, A.M. Efstathiou, X.E. Verykios, Stud. Surf. Sci. Catal. 101 (1996) 443.
- [10] M. Prettre, C.H. Eichner, M. Perrin, Trans. Faraday Soc. 43 (1946) 335.
- [11] D. Dissanayake, M.P. Rosynek, K.C.C. Kharas, J.H. Lunsford, J. Catal. 132 (1991) 117.
- [12] W.J.M. Vermeiren, E. Blomsma, P.A. Jacobs, Catal. Today 13 (1992) 427.
- [13] K. Nakagawa, N. Ikenaga, Y. Teng, T. Kobayashi, T. Suzuki, J. Catal. 186 (1999) 405.

- [14] S.C. Tsang, J.B. Claridge, M.L.H. Green, Catal. Today 23 (1995) 3.
- [15] V.A. Tsipouriari, A.M. Efstathiou, X.E. Verykios, J. Catal. 161 (1996) 31.
- [16] K. Nakagawa, N. Ikenaga, Y. Teng, T. Kobayashi, T. Suzuki, Appl. Catal. A 180 (1999) 183.
- [17] G. Ertl, Adv. Catal. 37 (1990) 213.
- [18] F. Schueth, B.E. Henry, L.D. Schmit, Adv. Catal. 39 (1993) 51.
- [19] O.V. Buyevskaya, D. Wolf, M. Baerns, Catal. Lett. 29 (1994) 249.
- [20] O.V. Buyevskaya, K. Walter, D. Wolf, M. Baerns, Catal. Lett. 38 (1996) 81.
- [21] Y. Boucouvalas, Z. Zhang, X.E. Verykios, Catal. Lett. 40 (1996) 189.
- [22] Y. Boucouvalas, Z.L. Zhang, A.M. Efstathiou, X.E. Verykios, Stud. Surf. Sci. Catal. 101 (1996) 443.